Hélium??

http://fr.wikipedia.org/wiki/H%C3%A9lium

Propriétés chimiques

Avec le néon, l'hélium est chimiquement le moins réactif de tous les corps dans les conditions normales, en raison de sa valence égale à 0 [30]. Il peut néanmoins former des composés instables (excimères) avec le tungstène, l'iode, le fluor, le soufre et le phosphore en phase plasma, par décharge ou d'une autre manière. HeNe, HgHe10, WHe2 et les ions moléculaires He2+, He2++, HeH+, HeD+ ont été créés de cette manière. Cette technique a aussi permis la production de la molécule neutre He2, qui possède un plus grand nombre de systèmes de bandes, et HgHe, dont la cohésion ne semble reposer que sur des forces de polarisation. Théoriquement, d'autres composants comme le fluorohydrure d'hélium (HHeF) sont également possibles.

Il semblerait à l'heure actuelle que les seuls composés stables de l'hélium prouvés soient des complexes endoédriques de fullerènes, comme He@C60, qui désigne un atome d'hélium emprisonné dans une cage de fullerène C60.

Propriétés biologiques

L'hélium, neutre, dans les conditions standard, est non-toxique, ne joue aucun rôle biologique et on en trouve à l'état de traces dans le sang humain. Si l'on en inhale assez pour que le dioxygène nécessaire à une respiration normale soit déplacé, l'asphyxie devient possible.

Inhalation

Fichier audio
Texte lu à l'hélium (info)
Si besoin, utilisez la touche page précédente du navigateur en fin d'audition.

(en) Helium is a colorless, odorless, tasteless, non-toxic, inert monatomic chemical element, that heads the noble gas series in the periodic table and whose atomic number is 2. Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions.


Des difficultés  pour  écouter le fichier ? Des problèmes pour écouter le fichier ?

La voix d'un individu qui a inhalé de l'hélium change temporairement de timbre vers les harmoniques élevés — la vitesse du son dans l'hélium est presque trois fois celle dans l'air — et comme la fréquence fondamentale d'une cavité remplie de gaz est proportionnelle à la vitesse du son, l'inhalation d'hélium correspondra à une augmentation des fréquences de résonance de l'appareil phonatoire qui modulent la fréquence fondamentale donnée par les cordes vocales[10],[31],[32]. Un effet opposé, de baisse de timbre, peut être obtenu en inhalant un gaz dense, comme l'hexafluorure de soufre.

L'inhalation d'hélium à faible dose est normalement sans danger. Cependant l'utilisation d'hélium du commerce tout venant, comme celui utilisé pour gonfler des ballons, peut être dangereuse en raison des nombreux contaminants qu'il peut contenir, traces d'autres gaz, ou aérosols d'huile lubrifiante.

L'inhalation d'hélium en excès peut être dangereuse, puisque l'hélium est simplement un asphyxiant, qui remplace le dioxygène nécessaire à une respiration normale[10],[33]. La respiration d'hélium pur provoque l'asphyxie en quelques minutes. L'inhalation de l'hélium directement à partir de cylindres sous pression est extrêmement dangereuse, en raison du fort débit, qui peut résulter en un barotraumatisme qui déchire le tissu pulmonaire et peut être fatal[33],[34]. Cependant cet accident est assez rare, puisqu'on ne compte que deux décès entre 2000 et 2004 aux États-Unis[34].

À haute pression (plus de 20 atm ou 2 Mpa), un mélange d'hélium et de dioxygène (héliox) peut conduire à un syndrome nerveux des hautes pressions, une espèce d'effet contre-anesthésique. En ajoutant un peu de diazote au mélange, on peut éviter le problème[35],[36].

Utilisation thérapeutique

L'hélium est administré dans des mélanges contenant un minimum de 20 % de dioxygène, à des patients aux prises avec une obstruction des voies respiratoires supérieures ou inférieures. La faible viscosité de l'hélium permet ainsi de diminuer le travail respiratoire.

 

Sécurité

En ce qui concerne l'hélium cryogénique, les mesures de sécurité sont semblables à celles nécessaires pour l'azote liquide ; sa température extrêmement basse peut causer des brûlures par le froid.

Une inhalation dune grande quantité en une seule prise, produit une légère asphyxie, conduisant à une courte mais dangereuse perte de conscience. On dénombre également certains cas d'embolies cérébrales ou de sérieux problèmes pulmonaires chez les personnes ayant inhalé de l'hélium sous pression.

Par ailleurs, le taux de dilatation entre la phase liquide et la phase gazeuse est tel qu'il peut provoquer des explosions en cas de vaporisation rapide, si aucun dispositif de limitation de pression n'est installé.

Les réservoirs d'hélium gazeux à 5–10 K doivent aussi être manipulés comme s'ils contenaient de l'hélium liquide, en raison de la dilatation thermique importante et rapide qui a lieu quand de l'hélium à moins de 10 K est amené à la température ordinaire[30].

Usages

Malgré son prix élevé, l'hélium est utilisé pour de nombreux usages exigant certaines de ses propriétés uniques, telles son point d'ébullition bas, sa faible densité, sa faible solubilité, sa haute conductivité thermique ou son caractère chimiquement et biologiquement inerte. On le trouve dans le commerce sous forme liquide ou gazeuse. Sous forme liquide, on peut trouver des petits réservoirs appelés dewars, qui peuvent contenir jusqu'à 1 000 l d'hélium, ou dans des grands réservoirs ISO de capacités nominales jusqu'à 40 000 l. Sous forme gazeuse, de petites quantités d'hélium sont fournies dans des cylindres à haute pression contenant jusqu'à 8,5 m3 standards, tandis que les grandes quantités sont livrées en camions-citernes sous pression qui peuvent avoir des capacités jusqu'à 5 000 m3 standards.

Industriels

En raison de son caractère inerte, sa grande conductivité thermique, sa transparence aux neutrons et parce qu'il ne forme pas d'isotope radioactifs au sein des réacteurs, on utilise l'hélium comme fluide de transfert de chaleur dans certains réacteurs nucléaires refroidis au gaz[37].

L'hélium est utilisé comme atmosphère protectrice lors de la croissance du silicium monocristallin destiné à la fabrication de circuits intégrés et des fibres optiques, pour la production de titane et de zirconium, et en chromatographie en phase gazeuse[30], parce qu'il est inerte. Vu son inertie chimique, ses propriétés thermodynamiques et calorifiques idéales, sa vitesse du son élevée et un grand coefficient de Laplace, il est également utile dans les souffleries supersoniques[38] ou pour les installations d'étude de phénomènes transitoires[39].

L'hélium en mélange avec un gaz plus lourd, comme le xénon, est utile pour la réfrigération thermoacoustique, en raison du grand rapport des capacités thermiques et du faible nombre de Prandtl[40]. L'inertie chimique de l'hélium a des avantages environnementaux sur d'autres systèmes de réfrigération, qui contribuent au trou d'ozone ou au réchauffement climatique[41].

Comme il diffuse à travers les solides trois fois plus vite que l'air, l'hélium est utilisé pour détecter les fuites dans les équipements à ultravide ou les réservoirs à haute pression[37].

Il est également utilisé avec des produits alimentaires (additif alimentaire autorisé par l'Union européenne sous la référence E939) pour permettre une vérification de l'étanchéité de l'emballage (voir liste des additifs alimentaires).

 

Scientifiques

L'hélium liquide est utilisé pour refroidir les aimants supraconducteurs des appareils à IRM modernes

L'utilisation de l'hélium réduit les effets de distorsion dus aux variations de température dans l'espace séparant les lentilles de certains télescopes ou lunettes, en raison de son indice de réfraction exceptionnellement bas[18]. Cette méthode est spécialement utilisée pour les télescopes solaires, soumis à des variations importantes de température, mais pour lesquels une enceinte supportant la différence de pression entre l'atmosphère et le vide serait trop lourde[42],[43].

L'âge des roches et minéraux qui contiennent de l'uranium et du thorium peut être estimé en mesurant leur contenu en hélium par un procédé appelé datation à l'hélium[10],[18].

L'hélium liquide est aussi utilisé pour refroidir certains métaux aux températures extrêmement basses nécessitées pour la supraconductivité, par exemple pour les aimants supraconducteurs utilisés notamment pour les détecteurs à IRM. Le LHC au CERN utilise 96 t d'hélium liquide pour maintenir la température des aimants à 1,9 K[44]. De façon plus générale, l'hélium à basse température est utilisé en cryogénie.

Commerciaux et de loisir

En raison de sa faible solubilité dans le tissu nerveux, on utilise des mélanges d'hélium tels que le trimix, l'héliox et l'héliair pour la plongée profonde, afin de réduire les effets de la narcose à l'azote[45],[46]. Aux profondeurs supérieures à 150 m, de petites quantités d'hydrogène sont ajoutées au mélange hélium-dioxygène pour contrebalancer le syndrome nerveux des hautes pressions[47].

À ces profondeurs, la faible densité de l'hélium diminue considérablement l'effort respiratoire[48].

Les lasers He-Ne ont diverses applications, en particulier les lecteurs de code-barres[10].

Dirigeables, ballons et fusées

En raison de sa faible densité et de son incombustibilité, l'hélium est le gaz préféré pour gonfler des dirigeables tels que ce dirigeable publicitaire.

Comme l'hélium est plus léger que l'air, il peut être utilisé pour gonfler des dirigeables et des ballons libres ou captifs. Bien que l'hydrogène ait une force portante approximativement 7 % supérieure, l'hélium a l'avantage d'être incombustible (et même ignifuge)[49].

L'exploration de l'atmosphère, notamment pour la météorologie s'effectue avec des ballons-sondes la plupart du temps gonflés à l'hélium.

En technique des fusées, l'hélium est utilisé comme milieu de déplacement pour gérer par pressurisation le combustible et le comburant dans les réservoirs en microgravité et pour assurer le mélange d'hydrogène et de dioxygène qui alimente les tuyères de propulsion. Il est aussi utilisé pour la purge de ces substances dans l'équipement au sol avant le lancement, et pour pré-refroidir l'hydrogène liquide des véhicules spatiaux. Par exemple, la fusée Saturn V consommait environ 370 000 m3 d'hélium pour décoller[30].

Ressources et purification de l'hélium

Abondance naturelle

L'hélium est le deuxième élément le plus abondant dans l'Univers connu après l'hydrogène et en constitue 23 % de la masse baryonique[10]. La grande majorité de l'hélium a été formé par la nucléosynthèse primordiale, dans les minutes suivant le Big Bang. C'est pourquoi la mesure de son abondance contribue à fixer certains paramètres des modèles cosmologiques. Dans la majeure partie de l'existence des étoiles, il est formé par la fusion nucléaire de l'hydrogène. En fin de vie, les étoiles utilisent l'hélium comme matière première pour la création d'éléments plus lourds, par des processus bien plus rapides, voire explosifs. Au final, l'hélium de l'Univers ne provient qu'en très faible partie des étoiles.

Dans l'atmosphère terrestre, la concentration de l'hélium est 5,2×10-6 en volume[50],[51]. Cette basse concentration est assez constante dans le temps, en raison d'un équilibre entre la production continue d'hélium dans les roches et la fuite vers l'espace par divers mécanismes[52],[53]. Dans l'hétérosphère terrestre, une partie de la haute atmosphère, l'hélium et autres gaz légers sont les constituants les plus abondants.

Presque tout l'hélium sur Terre provient de la radioactivité α. On le trouve principalement dans les composés d'uranium et de thorium, notamment la pechblende, la carnotite et la monazite, parce qu'ils émettent des particules α, qui sont des noyaux d'hélium ionisé He2+, qui se neutralisent immédiatement avec des électrons. On estime à 3 000 t l'hélium ainsi produit chaque année dans la lithosphère[54],[55],[56]. Dans la croûte terrestre, la concentration de l'hélium est 8×10-6 en volume. Dans l'eau de mer, elle n'est que de 4×10-12. Il y en a aussi de petites quantités dans les eaux minérales, le gaz volcanique et le fer météoritique. Comme l'hélium est piégé comme le gaz naturel par les couches de roches imperméables, on trouve les plus hautes concentrations d'hélium dans les gisements de gaz naturel, d'où l'on extrait la plupart de l'hélium commercial. Sa concentration en volume par rapport au gaz naturel varie de quelques parties par million à une concentration de 7 % identifiée dans le comté de San Juan, Nouveau-Mexique[57],[58].

Extraction et purification

Pour l'utilisation à grande échelle, l'hélium est extrait par distillation fractionnée du gaz naturel, qui peut en contenir jusqu'à 7 %[59]. Comme l'hélium a un point d'ébullition inférieur à tout autre corps, on utilise une basse température et une haute pression pour liquéfier presque tous les autres gaz (principalement le diazote et le méthane). L'hélium brut qui en résulte est alors purifié par exposition à des températures de plus en plus basses, ce qui fait précipiter pratiquement tout le diazote et autres gaz restants du mélange gazeux. On utilise enfin du charbon actif pour une étape finale de purification, pour obtenir ainsi de l'hélium d'une qualité de 99,995 %[60]. La principale impureté de l'hélium de qualité A est le néon. Pour terminer la purification, la plupart de l'hélium produit est liquéfié, par un processus cryogénique. La liquéfaction est nécessaire pour les applications utilisant l'hélium liquide et permet d'ailleurs aux fournisseurs d'hélium de réduire le coût du transport à distance, car les plus grands réservoirs à hélium liquide ont une capacité au moins cinq fois plus grande que les remorques portant des cylindres d'hélium gazeux sous pression[61],a.

En 2005, environ 160 millions de m3 d'hélium ont été extraits du gaz naturel, ou puisés dans les réserves, avec environ 83 % des États-Unis, 11 % d'Algérie et le reste principalement de Russie et de Pologne[62]. Aux États-Unis, la plupart de l'hélium est extrait du gaz naturel de Hugoton et des gisements voisins du Kansas, de l'Oklahoma et du Texas[61].

Une autre méthode de production et de purification de l'hélium est la diffusion du gaz naturel brut à travers des membranes semi-perméables ou d'autres barrières[63].

Il est possible de faire la synthèse de l'hélium en bombardant du lithium ou du bore avec des protons de haute énergie, mais cela ne constitue pas une méthode économiquement viable de production[64].

Histoire

Découverte

La première indication de l'hélium est observée le 18 août 1868, comme une raie jaune brillante à une longueur d'onde de 587,49 nm dans le spectre de la chromosphère du Soleil. Cette raie est détectée par l'astronome français Jules Janssen pendant une éclipse totale à Guntur (Inde)[65],[10]. Au début, on pense que cette raie est celle du sodium. Le 20 octobre de la même année, l'astronome anglais Norman Lockyer observe une raie jaune dans le spectre solaire, qu'il appelle raie de Fraunhofer D3, en raison de sa proximité avec les raies bien connues D1 et D2 du sodium[66]. Il en conclut qu'elle est provoquée par un élément du Soleil inconnu sur Terre. Lockyer et le chimiste anglais Edward Frankland nomment cet élément d'après le mot grec pour Soleil, ἥλιος (hélios)[67].

En 1882, Luigi Palmieri réussit pour la première fois à démontrer la présence d'hélium sur la Terre, par l'analyse spectrale de la lave du Vésuve.

 

Production et usages

Après un forage pétrolier en 1903 à Dexter, Kansas, le jet de gaz produit était incombustible. Erasmus Haworth, le géologue de l'État du Kansas, collecta des échantillons du gaz produit et les rapporta à l'université du Kansas, Lawrence. Avec l'aide des chimistes Hamilton Cady et David McFarland, il détermina que le gaz était, en volume, 72 % de diazote, 15 % de méthane (un pourcentage combustible seulement avec plus de dioxygène) et 12 % de gaz non identifiable[10],[80]. Une analyse plus poussée montre à Cady et McFarland que 1,84 % de l'échantillon de gaz est de l'hélium[81] ,[82]. Ceci montre qu'en dépit de sa rareté globale sur Terre, l'hélium est concentré en grandes quantités sous les Grandes Plaines américaines et est disponible pour la production comme sous-produit de l'exploitation du gaz naturel[83]. Les plus grandes réserves d'hélium sont dans le gisement d'Hugoton et dans les gisements voisins du Kansas du sud-ouest avec des prolongements au Texas et en Oklahoma.

Ceci a permis aux États-Unis de devenir le premier producteur d'hélium du monde. Suivant la suggestion de Sir Richard Threlfall, la marine des États-Unis subventionne trois petites usines expérimentales de production d'hélium pendant la Première Guerre mondiale. Le but est d'approvisionner les ballons captifs de barrage avec ce gaz ininflammable et plus léger que l'air. Un total de 5 700 m3 d'hélium à 92 % est produit par ce programme, malgré le fait que précédemment, moins de 100 l ait été produit au total[69]. Une partie de ce gaz est utilisé pour le premier dirigeable gonflé à l'hélium dans le monde, le C-7 de la marine américaine, inauguré pour son premier voyage de Hampton Roads en Virginie au terrain de Bolling à Washington le 1er décembre 1921[84].

Bien que le procédé d'extraction par liquéfaction du gaz à basse température ne soit pas mis au point assez tôt pour jouer un rôle significatif pendant la Première Guerre mondiale, la production se poursuivra. L'hélium est utilisé en premier lieu pour gonfler les aérostats. Cet usage va accroître la demande pendant la Seconde Guerre mondiale, de même que la demande pour la soudure à l'arc.

Le spectromètre de masse à hélium est également vital pour le projet Manhattan de bombe atomique[85].

Le gouvernement des États-Unis crée en 1925 une Réserve Nationale d'Hélium à Amarillo, Texas, dans le but d'approvisionner les aérostats, militaires en temps de guerre, et civils en temps de paix[18]. En raison de l'embargo militaire des États-Unis contre l'Allemagne, la fourniture d'hélium y a été restreinte et le Hindenburg a dû être gonflé à l'hydrogène, avec les conséquences catastrophiques qui s'ensuivirent lors de son incendie. La consommation d'hélium après la Seconde Guerre mondiale diminue, mais la réserve est augmentée dans les années 1950 pour assurer la fourniture d'hélium liquide pour le lancement des fusées pendant la course à l'espace et la guerre froide. En 1965, la consommation d'hélium des États-Unis dépasse huit fois le maximum qu'elle a atteint pendant le temps de guerre[86].

Après les Amendements sur les lois de l'hélium de 1960 (loi publique 86-777), le Bureau des mines des États-Unis met en place cinq usines privées pour l'extraction de l'hélium du gaz naturel. Pour ce programme de préservation de l'hélium, le Bureau construit un gazoduc de 684 km de Bushton, Kansas, à Cliffside, près d'Amarillo, gisement partiellement épuisé. Le mélange hélium-diazote ainsi apporté est injecté et stocké jusqu'au moment des besoins, quand il est extrait et purifié[87].

En 1995, un milliard de m3 de gaz ont été réunis mais la réserve a 1,4 milliard de dollars US de dettes, ce qui conduit le Congrès des États-Unis, en 1996, à faire cesser progressivement son activité[10],[49]. La Loi de privatisation de l'hélium de 1996 qui s'ensuit (Loi publique 104–273) enjoint le Département de l'Intérieur des États-Unis de commencer à vider la réserve en 2005[88].

L'hélium produit entre 1930 et 1945 était pur à environ 98,3 % (~ 2 % de diazote), ce qui convenait parfaitement pour les aérostats. En 1945, une petite quantité d'hélium à 99,9 % était produite pour l'utilisation pour la soudure à l'arc. Dès 1949, des quantités commerciales d'hélium de qualité A à 99,995 % étaient disponibles[89].

 Pendant plusieurs années, les États-Unis produisent plus de 90 % de l'hélium commercialement disponible dans le monde, les usines d'extraction du Canada, de Pologne, de Russie et d'autres nations produisant le reste. Au milieu des années 1990, une nouvelle usine commence à produire à Arzew, en Algérie. Avec 1,7×107 m3 par an, elle peut couvrir toute la demande européenne, soit environ 16 % de la production mondiale. Pendant ce temps-là, la consommation aux États-Unis a dépassé 15 000 t en 2000[90]. En 2004–2006, deux usines additionnelles sont construites, une à Ras Laffan (Qatar) produisant 9,2 tonnes d'hélium liquide par jour, soit 1,88×107 m3 par an, et l'autre à Skikda (Algérie). L'Algérie est rapidement devenue le deuxième producteur d'hélium[61]. Au cours de cette période, la consommation d'hélium et les coûts de production ont augmenté[91]. Entre 2002 et 2007, les prix de l'hélium ont doublé[92] et pendant la seule année 2008, les principaux fournisseurs ont augmenté leurs prix d'environ 50 %[citation nécessaire]. Ceci est lié à un état effectif de pénurie chronique d'hélium, ce qui en fait une matière première stratégique et recherchée par le monde scientifique et industriel, notamment pour de nouveaux usages comme la fabrication de fibres optiques et de circuits intégrés.

 

Suite !!

 

Créer un site internet avec e-monsite - Signaler un contenu illicite sur ce site